Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A performance analysis framework for SOCP algorithms in noisy compressed sensing (1304.0002v1)

Published 29 Mar 2013 in cs.IT, math.IT, and math.OC

Abstract: Solving under-determined systems of linear equations with sparse solutions attracted enormous amount of attention in recent years, above all, due to work of \cite{CRT,CanRomTao06,DonohoPol}. In \cite{CRT,CanRomTao06,DonohoPol} it was rigorously shown for the first time that in a statistical and large dimensional context a linear sparsity can be recovered from an under-determined system via a simple polynomial $\ell_1$-optimization algorithm. \cite{CanRomTao06} went even further and established that in \emph{noisy} systems for any linear level of under-determinedness there is again a linear sparsity that can be \emph{approximately} recovered through an SOCP (second order cone programming) noisy equivalent to $\ell_1$. Moreover, the approximate solution is (in an $\ell_2$-norm sense) guaranteed to be no further from the sparse unknown vector than a constant times the noise. In this paper we will also consider solving \emph{noisy} linear systems and present an alternative statistical framework that can be used for their analysis. To demonstrate how the framework works we will show how one can use it to precisely characterize the approximation error of a wide class of SOCP algorithms. We will also show that our theoretical predictions are in a solid agrement with the results one can get through numerical simulations.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.