Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A performance analysis framework for SOCP algorithms in noisy compressed sensing (1304.0002v1)

Published 29 Mar 2013 in cs.IT, math.IT, and math.OC

Abstract: Solving under-determined systems of linear equations with sparse solutions attracted enormous amount of attention in recent years, above all, due to work of \cite{CRT,CanRomTao06,DonohoPol}. In \cite{CRT,CanRomTao06,DonohoPol} it was rigorously shown for the first time that in a statistical and large dimensional context a linear sparsity can be recovered from an under-determined system via a simple polynomial $\ell_1$-optimization algorithm. \cite{CanRomTao06} went even further and established that in \emph{noisy} systems for any linear level of under-determinedness there is again a linear sparsity that can be \emph{approximately} recovered through an SOCP (second order cone programming) noisy equivalent to $\ell_1$. Moreover, the approximate solution is (in an $\ell_2$-norm sense) guaranteed to be no further from the sparse unknown vector than a constant times the noise. In this paper we will also consider solving \emph{noisy} linear systems and present an alternative statistical framework that can be used for their analysis. To demonstrate how the framework works we will show how one can use it to precisely characterize the approximation error of a wide class of SOCP algorithms. We will also show that our theoretical predictions are in a solid agrement with the results one can get through numerical simulations.

Citations (18)

Summary

We haven't generated a summary for this paper yet.