Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimality of $\ell_2/\ell_1$-optimization block-length dependent thresholds (1304.0001v1)

Published 29 Mar 2013 in cs.IT, math.IT, and math.OC

Abstract: The recent work of \cite{CRT,DonohoPol} rigorously proved (in a large dimensional and statistical context) that if the number of equations (measurements in the compressed sensing terminology) in the system is proportional to the length of the unknown vector then there is a sparsity (number of non-zero elements of the unknown vector) also proportional to the length of the unknown vector such that $\ell_1$-optimization algorithm succeeds in solving the system. In more papers \cite{StojnicCSetamBlock09,StojnicICASSP09block,StojnicJSTSP09} we considered under-determined systems with the so-called \textbf{block}-sparse solutions. In a large dimensional and statistical context in \cite{StojnicCSetamBlock09} we determined lower bounds on the values of allowable sparsity for any given number (proportional to the length of the unknown vector) of equations such that an $\ell_2/\ell_1$-optimization algorithm succeeds in solving the system. These lower bounds happened to be in a solid numerical agreement with what one can observe through numerical experiments. Here we derive the corresponding upper bounds. Moreover, the upper bounds that we obtain in this paper match the lower bounds from \cite{StojnicCSetamBlock09} and ultimately make them optimal.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.