Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Universal Approximation Depth and Errors of Narrow Belief Networks with Discrete Units (1303.7461v2)

Published 29 Mar 2013 in stat.ML, cs.LG, and math.PR

Abstract: We generalize recent theoretical work on the minimal number of layers of narrow deep belief networks that can approximate any probability distribution on the states of their visible units arbitrarily well. We relax the setting of binary units (Sutskever and Hinton, 2008; Le Roux and Bengio, 2008, 2010; Mont\'ufar and Ay, 2011) to units with arbitrary finite state spaces, and the vanishing approximation error to an arbitrary approximation error tolerance. For example, we show that a $q$-ary deep belief network with $L\geq 2+\frac{q{\lceil m-\delta \rceil}-1}{q-1}$ layers of width $n \leq m + \log_q(m) + 1$ for some $m\in \mathbb{N}$ can approximate any probability distribution on ${0,1,\ldots,q-1}n$ without exceeding a Kullback-Leibler divergence of $\delta$. Our analysis covers discrete restricted Boltzmann machines and na\"ive Bayes models as special cases.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)