Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A framework to characterize performance of LASSO algorithms (1303.7291v1)

Published 29 Mar 2013 in cs.IT, math.IT, math.OC, math.PR, math.ST, and stat.TH

Abstract: In this paper we consider solving \emph{noisy} under-determined systems of linear equations with sparse solutions. A noiseless equivalent attracted enormous attention in recent years, above all, due to work of \cite{CRT,CanRomTao06,DonohoPol} where it was shown in a statistical and large dimensional context that a sparse unknown vector (of sparsity proportional to the length of the vector) can be recovered from an under-determined system via a simple polynomial $\ell_1$-optimization algorithm. \cite{CanRomTao06} further established that even when the equations are \emph{noisy}, one can, through an SOCP noisy equivalent of $\ell_1$, obtain an approximate solution that is (in an $\ell_2$-norm sense) no further than a constant times the noise from the sparse unknown vector. In our recent works \cite{StojnicCSetam09,StojnicUpper10}, we created a powerful mechanism that helped us characterize exactly the performance of $\ell_1$ optimization in the noiseless case (as shown in \cite{StojnicEquiv10} and as it must be if the axioms of mathematics are well set, the results of \cite{StojnicCSetam09,StojnicUpper10} are in an absolute agreement with the corresponding exact ones from \cite{DonohoPol}). In this paper we design a mechanism, as powerful as those from \cite{StojnicCSetam09,StojnicUpper10}, that can handle the analysis of a LASSO type of algorithm (and many others) that can be (or typically are) used for "solving" noisy under-determined systems. Using the mechanism we then, in a statistical context, compute the exact worst-case $\ell_2$ norm distance between the unknown sparse vector and the approximate one obtained through such a LASSO. The obtained results match the corresponding exact ones obtained in \cite{BayMon10,DonMalMon10}. Moreover, as a by-product of our analysis framework we recognize existence of an SOCP type of algorithm that achieves the same performance.

Citations (125)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube