Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Unveiling Zeus (1303.7012v1)

Published 28 Mar 2013 in cs.CR

Abstract: Malware family classification is an age old problem that many Anti-Virus (AV) companies have tackled. There are two common techniques used for classification, signature based and behavior based. Signature based classification uses a common sequence of bytes that appears in the binary code to identify and detect a family of malware. Behavior based classification uses artifacts created by malware during execution for identification. In this paper we report on a unique dataset we obtained from our operations and classified using several machine learning techniques using the behavior-based approach. Our main class of malware we are interested in classifying is the popular Zeus malware. For its classification we identify 65 features that are unique and robust for identifying malware families. We show that artifacts like file system, registry, and network features can be used to identify distinct malware families with high accuracy---in some cases as high as 95%.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.