Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An intelligent approach towards automatic shape modeling and object extraction from satellite images using cellular automata based algorithm (1303.6711v1)

Published 27 Mar 2013 in cs.CV

Abstract: Automatic feature extraction domain has witnessed the application of many intelligent methodologies over past decade; however detection accuracy of these approaches were limited as object geometry and contextual knowledge were not given enough consideration. In this paper, we propose a frame work for accurate detection of features along with automatic interpolation, and interpretation by modeling feature shape as well as contextual knowledge using advanced techniques such as SVRF, Cellular Neural Network, Core set, and MACA. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the CNN approach. CNN has been effective in modeling different complex features effectively and complexity of the approach has been considerably reduced using corset optimization. The system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. System has been also proved to be effective in providing intelligent interpolation and interpretation of random features.

Citations (8)

Summary

We haven't generated a summary for this paper yet.