Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dynamics of Trust Reciprocation in Heterogenous MMOG Networks (1303.6385v3)

Published 26 Mar 2013 in cs.SI and physics.soc-ph

Abstract: Understanding the dynamics of reciprocation is of great interest in sociology and computational social science. The recent growth of Massively Multi-player Online Games (MMOGs) has provided unprecedented access to large-scale data which enables us to study such complex human behavior in a more systematic manner. In this paper, we consider three different networks in the EverQuest2 game: chat, trade, and trust. The chat network has the highest level of reciprocation (33%) because there are essentially no barriers to it. The trade network has a lower rate of reciprocation (27%) because it has the obvious barrier of requiring more goods or money for exchange; morever, there is no clear benefit to returning a trade link except in terms of social connections. The trust network has the lowest reciprocation (14%) because this equates to sharing certain within-game assets such as weapons, and so there is a high barrier for such connections because they require faith in the players that are granted such high access. In general, we observe that reciprocation rate is inversely related to the barrier level in these networks. We also note that reciprocation has connections across the heterogeneous networks. Our experiments indicate that players make use of the medium-barrier reciprocations to strengthen a relationship. We hypothesize that lower-barrier interactions are an important component to predicting higher-barrier ones. We verify our hypothesis using predictive models for trust reciprocations using features from trade interactions. Using the number of trades (both before and after the initial trust link) boosts our ability to predict if the trust will be reciprocated up to 11% with respect to the AUC.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.