Papers
Topics
Authors
Recent
2000 character limit reached

Particles Prefer Walking Along the Axes: Experimental Insights into the Behavior of a Particle Swarm (1303.6145v2)

Published 25 Mar 2013 in cs.NE and cs.AI

Abstract: Particle swarm optimization (PSO) is a widely used nature-inspired meta-heuristic for solving continuous optimization problems. However, when running the PSO algorithm, one encounters the phenomenon of so-called stagnation, that means in our context, the whole swarm starts to converge to a solution that is not (even a local) optimum. The goal of this work is to point out possible reasons why the swarm stagnates at these non-optimal points. To achieve our results, we use the newly defined potential of a swarm. The total potential has a portion for every dimension of the search space, and it drops when the swarm approaches the point of convergence. As it turns out experimentally, the swarm is very likely to come sometimes into "unbalanced" states, i. e., almost all potential belongs to one axis. Therefore, the swarm becomes blind for improvements still possible in any other direction. Finally, we show how in the light of the potential and these observations, a slightly adapted PSO rebalances the potential and therefore increases the quality of the solution.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.