Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Particles Prefer Walking Along the Axes: Experimental Insights into the Behavior of a Particle Swarm (1303.6145v2)

Published 25 Mar 2013 in cs.NE and cs.AI

Abstract: Particle swarm optimization (PSO) is a widely used nature-inspired meta-heuristic for solving continuous optimization problems. However, when running the PSO algorithm, one encounters the phenomenon of so-called stagnation, that means in our context, the whole swarm starts to converge to a solution that is not (even a local) optimum. The goal of this work is to point out possible reasons why the swarm stagnates at these non-optimal points. To achieve our results, we use the newly defined potential of a swarm. The total potential has a portion for every dimension of the search space, and it drops when the swarm approaches the point of convergence. As it turns out experimentally, the swarm is very likely to come sometimes into "unbalanced" states, i. e., almost all potential belongs to one axis. Therefore, the swarm becomes blind for improvements still possible in any other direction. Finally, we show how in the light of the potential and these observations, a slightly adapted PSO rebalances the potential and therefore increases the quality of the solution.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.