Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Monte-Carlo Algorithm for Dempster-Shafer Belief (1303.5757v1)

Published 20 Mar 2013 in cs.AI

Abstract: A very computationally-efficient Monte-Carlo algorithm for the calculation of Dempster-Shafer belief is described. If Bel is the combination using Dempster's Rule of belief functions Bel, ..., Bel,7, then, for subset b of the frame C), Bel(b) can be calculated in time linear in 1(31 and m (given that the weight of conflict is bounded). The algorithm can also be used to improve the complexity of the Shenoy-Shafer algorithms on Markov trees, and be generalised to calculate Dempster-Shafer Belief over other logics.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube