Papers
Topics
Authors
Recent
2000 character limit reached

Representing Bayesian Networks within Probabilistic Horn Abduction (1303.5738v1)

Published 20 Mar 2013 in cs.AI

Abstract: This paper presents a simple framework for Horn clause abduction, with probabilities associated with hypotheses. It is shown how this representation can represent any probabilistic knowledge representable in a Bayesian belief network. The main contributions are in finding a relationship between logical and probabilistic notions of evidential reasoning. This can be used as a basis for a new way to implement Bayesian Networks that allows for approximations to the value of the posterior probabilities, and also points to a way that Bayesian networks can be extended beyond a propositional language.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.