Representing Bayesian Networks within Probabilistic Horn Abduction (1303.5738v1)
Abstract: This paper presents a simple framework for Horn clause abduction, with probabilities associated with hypotheses. It is shown how this representation can represent any probabilistic knowledge representable in a Bayesian belief network. The main contributions are in finding a relationship between logical and probabilistic notions of evidential reasoning. This can be used as a basis for a new way to implement Bayesian Networks that allows for approximations to the value of the posterior probabilities, and also points to a way that Bayesian networks can be extended beyond a propositional language.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.