Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On active information storage in input-driven systems (1303.5526v1)

Published 22 Mar 2013 in cs.IT and math.IT

Abstract: Information theory and the framework of information dynamics have been used to provide tools to characterise complex systems. In particular, we are interested in quantifying information storage, information modification and information transfer as characteristic elements of computation. Although these quantities are defined for autonomous dynamical systems, information dynamics can also help to get a "wholistic" understanding of input-driven systems such as neural networks. In this case, we do not distinguish between the system itself, and the effects the input has to the system. This may be desired in some cases, but it will change the questions we are able to answer, and is consequently an important consideration, for example, for biological systems which perform non-trivial computations and also retain a short-term memory of past inputs. Many other real world systems like cortical networks are also heavily input-driven, and application of tools designed for autonomous dynamic systems may not necessarily lead to intuitively interpretable results. The aim of our work is to extend the measurements used in the information dynamics framework for input-driven systems. Using the proposed input-corrected information storage we hope to better quantify system behaviour, which will be important for heavily input-driven systems like artificial neural networks to abstract from specific benchmarks, or for brain networks, where intervention is difficult, individual components cannot be tested in isolation or with arbitrary input data.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.