Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Probabilistic Network of Predicates (1303.5415v1)

Published 13 Mar 2013 in cs.AI

Abstract: Bayesian networks are directed acyclic graphs representing independence relationships among a set of random variables. A random variable can be regarded as a set of exhaustive and mutually exclusive propositions. We argue that there are several drawbacks resulting from the propositional nature and acyclic structure of Bayesian networks. To remedy these shortcomings, we propose a probabilistic network where nodes represent unary predicates and which may contain directed cycles. The proposed representation allows us to represent domain knowledge in a single static network even though we cannot determine the instantiations of the predicates before hand. The ability to deal with cycles also enables us to handle cyclic causal tendencies and to recognize recursive plans.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)