Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Integrating Model Construction and Evaluation (1303.5405v1)

Published 13 Mar 2013 in cs.AI

Abstract: To date, most probabilistic reasoning systems have relied on a fixed belief network constructed at design time. The network is used by an application program as a representation of (in)dependencies in the domain. Probabilistic inference algorithms operate over the network to answer queries. Recognizing the inflexibility of fixed models has led researchers to develop automated network construction procedures that use an expressive knowledge base to generate a network that can answer a query. Although more flexible than fixed model approaches, these construction procedures separate construction and evaluation into distinct phases. In this paper we develop an approach to combining incremental construction and evaluation of a partial probability model. The combined method holds promise for improved methods for control of model construction based on a trade-off between fidelity of results and cost of construction.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.