Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Kernelet: High-Throughput GPU Kernel Executions with Dynamic Slicing and Scheduling (1303.5164v1)

Published 21 Mar 2013 in cs.DC

Abstract: Graphics processors, or GPUs, have recently been widely used as accelerators in the shared environments such as clusters and clouds. In such shared environments, many kernels are submitted to GPUs from different users, and throughput is an important metric for performance and total ownership cost. Despite the recently improved runtime support for concurrent GPU kernel executions, the GPU can be severely underutilized, resulting in suboptimal throughput. In this paper, we propose Kernelet, a runtime system with dynamic slicing and scheduling techniques to improve the throughput of concurrent kernel executions on the GPU. With slicing, Kernelet divides a GPU kernel into multiple sub-kernels (namely slices). Each slice has tunable occupancy to allow co-scheduling with other slices and to fully utilize the GPU resources. We develop a novel and effective Markov chain based performance model to guide the scheduling decision. Our experimental results demonstrate up to 31.1% and 23.4% performance improvement on NVIDIA Tesla C2050 and GTX680 GPUs, respectively.

Citations (116)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.