Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Unified Framework for Probabilistic Component Analysis (1303.3240v2)

Published 13 Mar 2013 in cs.LG, cs.CV, and stat.ML

Abstract: We present a unifying framework which reduces the construction of probabilistic component analysis techniques to a mere selection of the latent neighbourhood, thus providing an elegant and principled framework for creating novel component analysis models as well as constructing probabilistic equivalents of deterministic component analysis methods. Under our framework, we unify many very popular and well-studied component analysis algorithms, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), some of which have no probabilistic equivalents in literature thus far. We firstly define the Markov Random Fields (MRFs) which encapsulate the latent connectivity of the aforementioned component analysis techniques; subsequently, we show that the projection directions produced by all PCA, LDA, LPP and SFA are also produced by the Maximum Likelihood (ML) solution of a single joint probability density function, composed by selecting one of the defined MRF priors while utilising a simple observation model. Furthermore, we propose novel Expectation Maximization (EM) algorithms, exploiting the proposed joint PDF, while we generalize the proposed methodologies to arbitrary connectivities via parameterizable MRF products. Theoretical analysis and experiments on both simulated and real world data show the usefulness of the proposed framework, by deriving methods which well outperform state-of-the-art equivalents.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.