Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Model-guided Performance Analysis of the Sparse Matrix-Matrix Multiplication (1303.1651v2)

Published 7 Mar 2013 in cs.PF and cs.MS

Abstract: Achieving high efficiency with numerical kernels for sparse matrices is of utmost importance, since they are part of many simulation codes and tend to use most of the available compute time and resources. In addition, especially in large scale simulation frameworks the readability and ease of use of mathematical expressions are essential components for the continuous maintenance, modification, and extension of software. In this context, the sparse matrix-matrix multiplication is of special interest. In this paper we thoroughly analyze the single-core performance of sparse matrix-matrix multiplication kernels in the Blaze Smart Expression Template (SET) framework. We develop simple models for estimating the achievable maximum performance, and use them to assess the efficiency of our implementations. Additionally, we compare these kernels with several commonly used SET-based C++ libraries, which, just as Blaze, aim at combining the requirements of high performance with an elegant user interface. For the different sparse matrix structures considered here, we show that our implementations are competitive or faster than those of the other SET libraries for most problem sizes on a current Intel multicore processor.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.