Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Belief Revision in Probability Theory (1303.1517v1)

Published 6 Mar 2013 in cs.AI

Abstract: In a probability-based reasoning system, Bayes' theorem and its variations are often used to revise the system's beliefs. However, if the explicit conditions and the implicit conditions of probability assignments `me properly distinguished, it follows that Bayes' theorem is not a generally applicable revision rule. Upon properly distinguishing belief revision from belief updating, we see that Jeffrey's rule and its variations are not revision rules, either. Without these distinctions, the limitation of the Bayesian approach is often ignored or underestimated. Revision, in its general form, cannot be done in the Bayesian approach, because a probability distribution function alone does not contain the information needed by the operation.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.