Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Bayesian Variant of Shafer's Commonalities For Modelling Unforeseen Events (1303.1508v1)

Published 6 Mar 2013 in cs.AI

Abstract: Shafer's theory of belief and the Bayesian theory of probability are two alternative and mutually inconsistent approaches toward modelling uncertainty in artificial intelligence. To help reduce the conflict between these two approaches, this paper reexamines expected utility theory-from which Bayesian probability theory is derived. Expected utility theory requires the decision maker to assign a utility to each decision conditioned on every possible event that might occur. But frequently the decision maker cannot foresee all the events that might occur, i.e., one of the possible events is the occurrence of an unforeseen event. So once we acknowledge the existence of unforeseen events, we need to develop some way of assigning utilities to decisions conditioned on unforeseen events. The commonsensical solution to this problem is to assign similar utilities to events which are similar. Implementing this commonsensical solution is equivalent to replacing Bayesian subjective probabilities over the space of foreseen and unforeseen events by random set theory probabilities over the space of foreseen events. This leads to an expected utility principle in which normalized variants of Shafer's commonalities play the role of subjective probabilities. Hence allowing for unforeseen events in decision analysis causes Bayesian probability theory to become much more similar to Shaferian theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube