Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GALGO: A Genetic ALGOrithm Decision Support Tool for Complex Uncertain Systems Modeled with Bayesian Belief Networks (1303.1498v1)

Published 6 Mar 2013 in cs.AI

Abstract: Bayesian belief networks can be used to represent and to reason about complex systems with uncertain, incomplete and conflicting information. Belief networks are graphs encoding and quantifying probabilistic dependence and conditional independence among variables. One type of reasoning of interest in diagnosis is called abductive inference (determination of the global most probable system description given the values of any partial subset of variables). In some cases, abductive inference can be performed with exact algorithms using distributed network computations but it is an NP-hard problem and complexity increases drastically with the presence of undirected cycles, number of discrete states per variable, and number of variables in the network. This paper describes an approximate method based on genetic algorithms to perform abductive inference in large, multiply connected networks for which complexity is a concern when using most exact methods and for which systematic search methods are not feasible. The theoretical adequacy of the method is discussed and preliminary experimental results are presented.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.