Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An efficient approach for finding the MPE in belief networks (1303.1495v1)

Published 6 Mar 2013 in cs.AI

Abstract: Given a belief network with evidence, the task of finding the I most probable explanations (MPE) in the belief network is that of identifying and ordering the I most probable instantiations of the non-evidence nodes of the belief network. Although many approaches have been proposed for solving this problem, most work only for restricted topologies (i.e., singly connected belief networks). In this paper, we will present a new approach for finding I MPEs in an arbitrary belief network. First, we will present an algorithm for finding the MPE in a belief network. Then, we will present a linear time algorithm for finding the next MPE after finding the first MPE. And finally, we will discuss the problem of finding the MPE for a subset of variables of a belief network, and show that the problem can be efficiently solved by this approach.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.