Sequential decoding of a general classical-quantum channel (1303.0808v3)
Abstract: Since a quantum measurement generally disturbs the state of a quantum system, one might think that it should not be possible for a sender and receiver to communicate reliably when the receiver performs a large number of sequential measurements to determine the message of the sender. We show here that this intuition is not true, by demonstrating that a sequential decoding strategy works well even in the most general "one-shot" regime, where we are given a single instance of a channel and wish to determine the maximal number of bits that can be communicated up to a small failure probability. This result follows by generalizing a non-commutative union bound to apply for a sequence of general measurements. We also demonstrate two ways in which a receiver can recover a state close to the original state after it has been decoded by a sequence of measurements that each succeed with high probability. The second of these methods will be useful in realizing an efficient decoder for fully quantum polar codes, should a method ever be found to realize an efficient decoder for classical-quantum polar codes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.