Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automatic symmetry based cluster approach for anomalous brain identification in PET scan image : An Analysis (1303.0644v1)

Published 4 Mar 2013 in cs.CV

Abstract: Medical image segmentation is referred to the segmentation of known anatomic structures from different medical images. Normally, the medical data researches are more complicated and an exclusive structures. This computer aided diagnosis is used for assisting doctors in evaluating medical imagery or in recognizing abnormal findings in a medical image. To integrate the specialized knowledge for medical data processing is helpful to form a real useful healthcare decision making system. This paper studies the different symmetry based distances applied in clustering algorithms and analyzes symmetry approach for Positron Emission Tomography (PET) scan image segmentation. Unlike CT and MRI, the PET scan identifies the structure of blood flow to and from organs. PET scan also helps in early diagnosis of cancer and heart, brain and gastro intestinal ailments and to detect the progress of treatment. In this paper, the scope diagnostic task expands for PET image in various brain functions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)