Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Matrix Completion via Max-Norm Constrained Optimization (1303.0341v3)

Published 2 Mar 2013 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Matrix completion has been well studied under the uniform sampling model and the trace-norm regularized methods perform well both theoretically and numerically in such a setting. However, the uniform sampling model is unrealistic for a range of applications and the standard trace-norm relaxation can behave very poorly when the underlying sampling scheme is non-uniform. In this paper we propose and analyze a max-norm constrained empirical risk minimization method for noisy matrix completion under a general sampling model. The optimal rate of convergence is established under the Frobenius norm loss in the context of approximately low-rank matrix reconstruction. It is shown that the max-norm constrained method is minimax rate-optimal and yields a unified and robust approximate recovery guarantee, with respect to the sampling distributions. The computational effectiveness of this method is also discussed, based on first-order algorithms for solving convex optimizations involving max-norm regularization.

Citations (106)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.