Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Hash Functions Using Column Generation (1303.0339v1)

Published 2 Mar 2013 in cs.LG

Abstract: Fast nearest neighbor searching is becoming an increasingly important tool in solving many large-scale problems. Recently a number of approaches to learning data-dependent hash functions have been developed. In this work, we propose a column generation based method for learning data-dependent hash functions on the basis of proximity comparison information. Given a set of triplets that encode the pairwise proximity comparison information, our method learns hash functions that preserve the relative comparison relationships in the data as well as possible within the large-margin learning framework. The learning procedure is implemented using column generation and hence is named CGHash. At each iteration of the column generation procedure, the best hash function is selected. Unlike most other hashing methods, our method generalizes to new data points naturally; and has a training objective which is convex, thus ensuring that the global optimum can be identified. Experiments demonstrate that the proposed method learns compact binary codes and that its retrieval performance compares favorably with state-of-the-art methods when tested on a few benchmark datasets.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.