Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Peeling Algorithms (1302.7014v5)

Published 27 Feb 2013 in cs.DS

Abstract: The analysis of several algorithms and data structures can be framed as a peeling process on a random hypergraph: vertices with degree less than k are removed until there are no vertices of degree less than k left. The remaining hypergraph is known as the k-core. In this paper, we analyze parallel peeling processes, where in each round, all vertices of degree less than k are removed. It is known that, below a specific edge density threshold, the k-core is empty with high probability. We show that, with high probability, below this threshold, only (log log n)/log(k-1)(r-1) + O(1) rounds of peeling are needed to obtain the empty k-core for r-uniform hypergraphs. Interestingly, we show that above this threshold, Omega(log n) rounds of peeling are required to find the non-empty k-core. Since most algorithms and data structures aim to peel to an empty k-core, this asymmetry appears fortunate. We verify the theoretical results both with simulation and with a parallel implementation using graphics processing units (GPUs). Our implementation provides insights into how to structure parallel peeling algorithms for efficiency in practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiayang Jiang (2 papers)
  2. Michael Mitzenmacher (99 papers)
  3. Justin Thaler (40 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.