Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generating Bayesian Networks from Probability Logic Knowledge Bases (1302.6811v1)

Published 27 Feb 2013 in cs.AI

Abstract: We present a method for dynamically generating Bayesian networks from knowledge bases consisting of first-order probability logic sentences. We present a subset of probability logic sufficient for representing the class of Bayesian networks with discrete-valued nodes. We impose constraints on the form of the sentences that guarantee that the knowledge base contains all the probabilistic information necessary to generate a network. We define the concept of d-separation for knowledge bases and prove that a knowledge base with independence conditions defined by d-separation is a complete specification of a probability distribution. We present a network generation algorithm that, given an inference problem in the form of a query Q and a set of evidence E, generates a network to compute P(Q|E). We prove the algorithm to be correct.

Citations (105)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)