Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Using Modified Partitioning Around Medoids Clustering Technique in Mobile Network Planning (1302.6602v1)

Published 26 Feb 2013 in cs.AI and cs.NI

Abstract: Every cellular network deployment requires planning and optimization in order to provide adequate coverage, capacity, and quality of service (QoS). Optimization mobile radio network planning is a very complex task, as many aspects must be taken into account. With the rapid development in mobile network we need effective network planning tool to satisfy the need of customers. However, deciding upon the optimum placement for the base stations (BS s) to achieve best services while reducing the cost is a complex task requiring vast computational resource. This paper introduces the spatial clustering to solve the Mobile Networking Planning problem. It addresses antenna placement problem or the cell planning problem, involves locating and configuring infrastructure for mobile networks by modified the original Partitioning Around Medoids PAM algorithm. M-PAM (Modified Partitioning Around Medoids) has been proposed to satisfy the requirements and constraints. PAM needs to specify number of clusters (k) before starting to search for the best locations of base stations. The M-PAM algorithm uses the radio network planning to determine k. We calculate for each cluster its coverage and capacity and determine if they satisfy the mobile requirements, if not we will increase (k) and reapply algorithms depending on two methods for clustering. Implementation of this algorithm to a real case study is presented. Experimental results and analysis indicate that the M-PAM algorithm when applying method two is effective in case of heavy load distribution, and leads to minimum number of base stations, which directly affected onto the cost of planning the network.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube