Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Modified Partitioning Around Medoids Clustering Technique in Mobile Network Planning (1302.6602v1)

Published 26 Feb 2013 in cs.AI and cs.NI

Abstract: Every cellular network deployment requires planning and optimization in order to provide adequate coverage, capacity, and quality of service (QoS). Optimization mobile radio network planning is a very complex task, as many aspects must be taken into account. With the rapid development in mobile network we need effective network planning tool to satisfy the need of customers. However, deciding upon the optimum placement for the base stations (BS s) to achieve best services while reducing the cost is a complex task requiring vast computational resource. This paper introduces the spatial clustering to solve the Mobile Networking Planning problem. It addresses antenna placement problem or the cell planning problem, involves locating and configuring infrastructure for mobile networks by modified the original Partitioning Around Medoids PAM algorithm. M-PAM (Modified Partitioning Around Medoids) has been proposed to satisfy the requirements and constraints. PAM needs to specify number of clusters (k) before starting to search for the best locations of base stations. The M-PAM algorithm uses the radio network planning to determine k. We calculate for each cluster its coverage and capacity and determine if they satisfy the mobile requirements, if not we will increase (k) and reapply algorithms depending on two methods for clustering. Implementation of this algorithm to a real case study is presented. Experimental results and analysis indicate that the M-PAM algorithm when applying method two is effective in case of heavy load distribution, and leads to minimum number of base stations, which directly affected onto the cost of planning the network.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.