Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Combining Multiple Time Series Models Through A Robust Weighted Mechanism (1302.6595v1)

Published 26 Feb 2013 in cs.AI and stat.AP

Abstract: Improvement of time series forecasting accuracy through combining multiple models is an important as well as a dynamic area of research. As a result, various forecasts combination methods have been developed in literature. However, most of them are based on simple linear ensemble strategies and hence ignore the possible relationships between two or more participating models. In this paper, we propose a robust weighted nonlinear ensemble technique which considers the individual forecasts from different models as well as the correlations among them while combining. The proposed ensemble is constructed using three well-known forecasting models and is tested for three real-world time series. A comparison is made among the proposed scheme and three other widely used linear combination methods, in terms of the obtained forecast errors. This comparison shows that our ensemble scheme provides significantly lower forecast errors than each individual model as well as each of the four linear combination methods.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.