Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Scale Spatial Model for RSS-based Device-Free Localization (1302.5914v1)

Published 24 Feb 2013 in cs.NI and cs.HC

Abstract: RSS-based device-free localization (DFL) monitors changes in the received signal strength (RSS) measured by a network of static wireless nodes to locate people without requiring them to carry or wear any electronic device. Current models assume that the spatial impact area, i.e., the area in which a person affects a link's RSS, has constant size. This paper shows that the spatial impact area varies considerably for each link. Data from extensive experiments are used to derive a multi-scale spatial weight model that is a function of the fade level, i.e., the difference between the predicted and measured RSS, and of the direction of RSS change. In addition, a measurement model is proposed which gives a probability of a person locating inside the derived spatial model for each given RSS measurement. A real-time radio tomographic imaging system is described which uses channel diversity and the presented models. Experiments in an open indoor environment, in a typical one-bedroom apartment and in a through-wall scenario are conducted to determine the accuracy of the system. We demonstrate that the new system is capable of localizing and tracking a person with high accuracy (<0.30 m) in all the environments, without the need to change the model parameters.

Citations (20)

Summary

We haven't generated a summary for this paper yet.