Stochastic dynamics of lexicon learning in an uncertain and nonuniform world (1302.5526v2)
Abstract: We study the time taken by a language learner to correctly identify the meaning of all words in a lexicon under conditions where many plausible meanings can be inferred whenever a word is uttered. We show that the most basic form of cross-situational learning - whereby information from multiple episodes is combined to eliminate incorrect meanings - can perform badly when words are learned independently and meanings are drawn from a nonuniform distribution. If learners further assume that no two words share a common meaning, we find a phase transition between a maximally-efficient learning regime, where the learning time is reduced to the shortest it can possibly be, and a partially-efficient regime where incorrect candidate meanings for words persist at late times. We obtain exact results for the word-learning process through an equivalence to a statistical mechanical problem of enumerating loops in the space of word-meaning mappings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.