Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spectral Clustering with Unbalanced Data (1302.5134v1)

Published 20 Feb 2013 in stat.ML

Abstract: Spectral clustering (SC) and graph-based semi-supervised learning (SSL) algorithms are sensitive to how graphs are constructed from data. In particular if the data has proximal and unbalanced clusters these algorithms can lead to poor performance on well-known graphs such as $k$-NN, full-RBF, $\epsilon$-graphs. This is because the objectives such as Ratio-Cut (RCut) or normalized cut (NCut) attempt to tradeoff cut values with cluster sizes, which are not tailored to unbalanced data. We propose a novel graph partitioning framework, which parameterizes a family of graphs by adaptively modulating node degrees in a $k$-NN graph. We then propose a model selection scheme to choose sizable clusters which are separated by smallest cut values. Our framework is able to adapt to varying levels of unbalancedness of data and can be naturally used for small cluster detection. We theoretically justify our ideas through limit cut analysis. Unsupervised and semi-supervised experiments on synthetic and real data sets demonstrate the superiority of our method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.