Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Implementation of Continuous Bayesian Networks Using Sums of Weighted Gaussians (1302.4942v1)

Published 20 Feb 2013 in cs.AI

Abstract: Bayesian networks provide a method of representing conditional independence between random variables and computing the probability distributions associated with these random variables. In this paper, we extend Bayesian network structures to compute probability density functions for continuous random variables. We make this extension by approximating prior and conditional densities using sums of weighted Gaussian distributions and then finding the propagation rules for updating the densities in terms of these weights. We present a simple example that illustrates the Bayesian network for continuous variables; this example shows the effect of the network structure and approximation errors on the computation of densities for variables in the network.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.