Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Social Tags for Cross-Domain Collaborative Filtering (1302.4888v2)

Published 20 Feb 2013 in cs.IR and cs.AI

Abstract: One of the most challenging problems in recommender systems based on the collaborative filtering (CF) concept is data sparseness, i.e., limited user preference data is available for making recommendations. Cross-domain collaborative filtering (CDCF) has been studied as an effective mechanism to alleviate data sparseness of one domain using the knowledge about user preferences from other domains. A key question to be answered in the context of CDCF is what common characteristics can be deployed to link different domains for effective knowledge transfer. In this paper, we assess the usefulness of user-contributed (social) tags in this respect. We do so by means of the Generalized Tag-induced Cross-domain Collaborative Filtering (GTagCDCF) approach that we propose in this paper and that we developed based on the general collective matrix factorization framework. Assessment is done by a series of experiments, using publicly available CF datasets that represent three cross-domain cases, i.e., two two-domain cases and one three-domain case. A comparative analysis on two-domain cases involving GTagCDCF and several state-of-the-art CDCF approaches indicates the increased benefit of using social tags as representatives of explicit links between domains for CDCF as compared to the implicit links deployed by the existing CDCF methods. In addition, we show that users from different domains can already benefit from GTagCDCF if they only share a few common tags. Finally, we use the three-domain case to validate the robustness of GTagCDCF with respect to the scale of datasets and the varying number of domains.

Citations (6)

Summary

We haven't generated a summary for this paper yet.