Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Separation Criterion and Recovery Algorithm for Chain Graphs (1302.3606v1)

Published 13 Feb 2013 in cs.AI

Abstract: Chain graphs give a natural unifying point of view on Markov and Bayesian networks and enlarge the potential of graphical models for description of conditional independence structures. In the paper a direct graphical separation criterion for chain graphs, called c-separation, which generalizes the d-separation criterion for Bayesian networks is introduced (recalled). It is equivalent to the classic moralization criterion for chain graphs and complete in sense that for every chain graph there exists a probability distribution satisfying exactly conditional independencies derivable from the chain graph by the c-separation criterion. Every class of Markov equivalent chain graphs can be uniquely described by a natural representative, called the largest chain graph. A recovery algorithm, which on basis of the (conditional) dependency model induced by an unknown chain graph finds the corresponding largest chain graph, is presented.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)