Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor (1302.3417v1)

Published 14 Feb 2013 in cs.DS

Abstract: Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph $G= (V,E)$ and a parameter $\eps$, when queried on a vertex $v\in V$, returns the part (subset of vertices) which $v$ belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most $\eps |V|$. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in $1/\eps$, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in $1/\eps$. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)