Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Trend prediction in temporal bipartite networks: the case of Movielens, Netflix, and Digg (1302.3101v1)

Published 13 Feb 2013 in cs.SI and physics.soc-ph

Abstract: Online systems where users purchase or collect items of some kind can be effectively represented by temporal bipartite networks where both nodes and links are added with time. We use this representation to predict which items might become popular in the near future. Various prediction methods are evaluated on three distinct datasets originating from popular online services (Movielens, Netflix, and Digg). We show that the prediction performance can be further enhanced if the user social network is known and centrality of individual users in this network is used to weight their actions.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.