Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trend prediction in temporal bipartite networks: the case of Movielens, Netflix, and Digg (1302.3101v1)

Published 13 Feb 2013 in cs.SI and physics.soc-ph

Abstract: Online systems where users purchase or collect items of some kind can be effectively represented by temporal bipartite networks where both nodes and links are added with time. We use this representation to predict which items might become popular in the near future. Various prediction methods are evaluated on three distinct datasets originating from popular online services (Movielens, Netflix, and Digg). We show that the prediction performance can be further enhanced if the user social network is known and centrality of individual users in this network is used to weight their actions.

Citations (39)

Summary

We haven't generated a summary for this paper yet.