Minimum length path decompositions (1302.2788v1)
Abstract: We consider a bi-criteria generalization of the pathwidth problem, where, for given integers $k,l$ and a graph $G$, we ask whether there exists a path decomposition $\cP$ of $G$ such that the width of $\cP$ is at most $k$ and the number of bags in $\cP$, i.e., the \emph{length} of $\cP$, is at most $l$. We provide a complete complexity classification of the problem in terms of $k$ and $l$ for general graphs. Contrary to the original pathwidth problem, which is fixed-parameter tractable with respect to $k$, we prove that the generalized problem is NP-complete for any fixed $k\geq 4$, and is also NP-complete for any fixed $l\geq 2$. On the other hand, we give a polynomial-time algorithm that, for any (possibly disconnected) graph $G$ and integers $k\leq 3$ and $l>0$, constructs a path decomposition of width at most $k$ and length at most $l$, if any exists. As a by-product, we obtain an almost complete classification of the problem in terms of $k$ and $l$ for connected graphs. Namely, the problem is NP-complete for any fixed $k\geq 5$ and it is polynomial-time for any $k\leq 3$. This leaves open the case $k=4$ for connected graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.