Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Minimum length path decompositions (1302.2788v1)

Published 12 Feb 2013 in cs.DS and math.CO

Abstract: We consider a bi-criteria generalization of the pathwidth problem, where, for given integers $k,l$ and a graph $G$, we ask whether there exists a path decomposition $\cP$ of $G$ such that the width of $\cP$ is at most $k$ and the number of bags in $\cP$, i.e., the \emph{length} of $\cP$, is at most $l$. We provide a complete complexity classification of the problem in terms of $k$ and $l$ for general graphs. Contrary to the original pathwidth problem, which is fixed-parameter tractable with respect to $k$, we prove that the generalized problem is NP-complete for any fixed $k\geq 4$, and is also NP-complete for any fixed $l\geq 2$. On the other hand, we give a polynomial-time algorithm that, for any (possibly disconnected) graph $G$ and integers $k\leq 3$ and $l>0$, constructs a path decomposition of width at most $k$ and length at most $l$, if any exists. As a by-product, we obtain an almost complete classification of the problem in terms of $k$ and $l$ for connected graphs. Namely, the problem is NP-complete for any fixed $k\geq 5$ and it is polynomial-time for any $k\leq 3$. This leaves open the case $k=4$ for connected graphs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.