Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Acyclic edge coloring of graphs (1302.2405v4)

Published 11 Feb 2013 in math.CO and cs.DM

Abstract: An {\em acyclic edge coloring} of a graph $G$ is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} $\chiup_{a}'(G)$ of a graph $G$ is the least number of colors needed in an acyclic edge coloring of $G$. Fiam\v{c}\'{i}k (1978) conjectured that $\chiup_{a}'(G) \leq \Delta(G) + 2$, where $\Delta(G)$ is the maximum degree of $G$. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph $G$ with maximum degree at most $\kappa$ is {\em $\kappa$-deletion-minimal} if $\chiup_{a}'(G) > \kappa$ and $\chiup_{a}'(H) \leq \kappa$ for every proper subgraph $H$ of $G$. The purpose of this paper is to provide many structural lemmas on $\kappa$-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every $5$-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph $G$ without intersecting triangles satisfies $\chiup_{a}'(G) \leq \Delta(G) + 3$ (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if $G$ is a graph with $\Delta(G) \geq 3$ and all the $3{+}$-vertices are independent, then $\chiup_{a}'(G) = \Delta(G)$. We hope the structural lemmas will shed some light on the acyclic edge coloring problems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.