Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Phase Transition of Matrix Recovery from Gaussian Measurements Matches the Minimax MSE of Matrix Denoising (1302.2331v1)

Published 10 Feb 2013 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Let $X_0$ be an unknown $M$ by $N$ matrix. In matrix recovery, one takes $n < MN$ linear measurements $y_1,..., y_n$ of $X_0$, where $y_i = \Tr(a_iT X_0)$ and each $a_i$ is a $M$ by $N$ matrix. For measurement matrices with Gaussian i.i.d entries, it known that if $X_0$ is of low rank, it is recoverable from just a few measurements. A popular approach for matrix recovery is Nuclear Norm Minimization (NNM). Empirical work reveals a \emph{phase transition} curve, stated in terms of the undersampling fraction $\delta(n,M,N) = n/(MN)$, rank fraction $\rho=r/N$ and aspect ratio $\beta=M/N$. Specifically, a curve $\delta* = \delta*(\rho;\beta)$ exists such that, if $\delta > \delta*(\rho;\beta)$, NNM typically succeeds, while if $\delta < \delta*(\rho;\beta)$, it typically fails. An apparently quite different problem is matrix denoising in Gaussian noise, where an unknown $M$ by $N$ matrix $X_0$ is to be estimated based on direct noisy measurements $Y = X_0 + Z$, where the matrix $Z$ has iid Gaussian entries. It has been empirically observed that, if $X_0$ has low rank, it may be recovered quite accurately from the noisy measurement $Y$. A popular matrix denoising scheme solves the unconstrained optimization problem $\text{min} | Y - X |F2/2 + \lambda |X|* $. When optimally tuned, this scheme achieves the asymptotic minimax MSE $\cM(\rho) = \lim_{N \goto \infty} \inf_\lambda \sup_{\rank(X) \leq \rho \cdot N} MSE(X,\hat{X}_\lambda)$. We report extensive experiments showing that the phase transition $\delta*(\rho)$ in the first problem coincides with the minimax risk curve $\cM(\rho)$ in the second problem, for {\em any} rank fraction $0 < \rho < 1$.

Citations (63)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.