Emergent Mind

Abstract

We design and analyze minimax-optimal algorithms for online linear optimization games where the player's choice is unconstrained. The player strives to minimize regret, the difference between his loss and the loss of a post-hoc benchmark strategy. The standard benchmark is the loss of the best strategy chosen from a bounded comparator set. When the the comparison set and the adversary's gradients satisfy L_infinity bounds, we give the value of the game in closed form and prove it approaches sqrt(2T/pi) as T -> infinity. Interesting algorithms result when we consider soft constraints on the comparator, rather than restricting it to a bounded set. As a warmup, we analyze the game with a quadratic penalty. The value of this game is exactly T/2, and this value is achieved by perhaps the simplest online algorithm of all: unprojected gradient descent with a constant learning rate. We then derive a minimax-optimal algorithm for a much softer penalty function. This algorithm achieves good bounds under the standard notion of regret for any comparator point, without needing to specify the comparator set in advance. The value of this game converges to sqrt{e} as T ->infinity; we give a closed-form for the exact value as a function of T. The resulting algorithm is natural in unconstrained investment or betting scenarios, since it guarantees at worst constant loss, while allowing for exponential reward against an "easy" adversary.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.