Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Cognitive Processing of Causal Knowledge (1302.1563v1)

Published 6 Feb 2013 in cs.AI

Abstract: There is a brief description of the probabilistic causal graph model for representing, reasoning with, and learning causal structure using Bayesian networks. It is then argued that this model is closely related to how humans reason with and learn causal structure. It is shown that studies in psychology on discounting (reasoning concerning how the presence of one cause of an effect makes another cause less probable) support the hypothesis that humans reach the same judgments as algorithms for doing inference in Bayesian networks. Next, it is shown how studies by Piaget indicate that humans learn causal structure by observing the same independencies and dependencies as those used by certain algorithms for learning the structure of a Bayesian network. Based on this indication, a subjective definition of causality is forwarded. Finally, methods for further testing the accuracy of these claims are discussed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.