Update Rules for Parameter Estimation in Bayesian Networks (1302.1519v1)
Abstract: This paper re-examines the problem of parameter estimation in Bayesian networks with missing values and hidden variables from the perspective of recent work in on-line learning [Kivinen & Warmuth, 1994]. We provide a unified framework for parameter estimation that encompasses both on-line learning, where the model is continuously adapted to new data cases as they arrive, and the more traditional batch learning, where a pre-accumulated set of samples is used in a one-time model selection process. In the batch case, our framework encompasses both the gradient projection algorithm and the EM algorithm for Bayesian networks. The framework also leads to new on-line and batch parameter update schemes, including a parameterized version of EM. We provide both empirical and theoretical results indicating that parameterized EM allows faster convergence to the maximum likelihood parameters than does standard EM.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.