Emergent Mind

Abstract

Let $G$ be a graph. Its laplacian matrix $L(G)$ is positive and we consider eigenvectors of its first non-null eigenvalue that are called Fiedler vector. They have been intensively used in spectral partitioning problems due to their good empirical properties. More recently Fiedler vectors have been also popularized in the computer graphics community to describe elongation of shapes. In more technical terms, authors have conjectured that extrema of Fiedler vectors can yield the diameter of a graph. In this work we present (FED) property for a graph $G$, i.e. the fact that diameter of a graph can be obtain by Fiedler vectors. We study in detail a parametric family of trees that gives indeed a counter example for the previous conjecture but reveals a threshold phenomenon for (FED) property. We end by an exhaustive enumeration of trees with at most 20 vertices for which (FED) is true and some perspectives.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.