Papers
Topics
Authors
Recent
2000 character limit reached

Analysis Based Blind Compressive Sensing (1302.1094v2)

Published 5 Feb 2013 in cs.IT and math.IT

Abstract: In this work we address the problem of blindly reconstructing compressively sensed signals by exploiting the co-sparse analysis model. In the analysis model it is assumed that a signal multiplied by an analysis operator results in a sparse vector. We propose an algorithm that learns the operator adaptively during the reconstruction process. The arising optimization problem is tackled via a geometric conjugate gradient approach. Different types of sampling noise are handled by simply exchanging the data fidelity term. Numerical experiments are performed for measurements corrupted with Gaussian as well as impulsive noise to show the effectiveness of our method.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.