Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SMML estimators for exponential families with continuous sufficient statistics (1302.0581v2)

Published 4 Feb 2013 in cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: The minimum message length principle is an information theoretic criterion that links data compression with statistical inference. This paper studies the strict minimum message length (SMML) estimator for $d$-dimensional exponential families with continuous sufficient statistics, for all $d \ge 1$. The partition of an SMML estimator is shown to consist of convex polytopes (i.e. convex polygons when $d=2$) which can be described explicitly in terms of the assertions and coding probabilities. While this result is known, we give a new proof based on the calculus of variations, and this approach gives some interesting new inequalities for SMML estimators. We also use this result to construct an SMML estimator for a $2$-dimensional normal random variable with known variance and a normal prior on its mean.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.