Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SMML estimators for exponential families with continuous sufficient statistics (1302.0581v2)

Published 4 Feb 2013 in cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: The minimum message length principle is an information theoretic criterion that links data compression with statistical inference. This paper studies the strict minimum message length (SMML) estimator for $d$-dimensional exponential families with continuous sufficient statistics, for all $d \ge 1$. The partition of an SMML estimator is shown to consist of convex polytopes (i.e. convex polygons when $d=2$) which can be described explicitly in terms of the assertions and coding probabilities. While this result is known, we give a new proof based on the calculus of variations, and this approach gives some interesting new inequalities for SMML estimators. We also use this result to construct an SMML estimator for a $2$-dimensional normal random variable with known variance and a normal prior on its mean.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)