Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse Multiple Kernel Learning with Geometric Convergence Rate (1302.0315v1)

Published 1 Feb 2013 in cs.LG and stat.ML

Abstract: In this paper, we study the problem of sparse multiple kernel learning (MKL), where the goal is to efficiently learn a combination of a fixed small number of kernels from a large pool that could lead to a kernel classifier with a small prediction error. We develop an efficient algorithm based on the greedy coordinate descent algorithm, that is able to achieve a geometric convergence rate under appropriate conditions. The convergence rate is achieved by measuring the size of functional gradients by an empirical $\ell_2$ norm that depends on the empirical data distribution. This is in contrast to previous algorithms that use a functional norm to measure the size of gradients, which is independent from the data samples. We also establish a generalization error bound of the learned sparse kernel classifier using the technique of local Rademacher complexity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.