Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploiting Symmetry in Tensors for High Performance: Multiplication with Symmetric Tensors (1301.7744v3)

Published 31 Jan 2013 in math.NA and cs.MS

Abstract: Symmetric tensor operations arise in a wide variety of computations. However, the benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire to simplify memory access patterns. In this paper, we propose a blocked data structure (Blocked Compact Symmetric Storage) wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor. We propose an algorithm-by-blocks, already shown of benefit for matrix computations, that exploits this storage format by utilizing a series of temporary tensors to avoid redundant computation. Further, partial symmetry within temporaries is exploited to further avoid redundant storage and redundant computation. A detailed analysis shows that, relative to storing and computing with tensors without taking advantage of symmetry and partial symmetry, storage requirements are reduced by a factor of $ O\left( m! \right)$ and computational requirements by a factor of $O\left( (m+1)!/2m \right)$, where $ m $ is the order of the tensor. However, as the analysis shows, care must be taken in choosing the correct block size to ensure these storage and computational benefits are achieved (particularly for low-order tensors). An implementation demonstrates that storage is greatly reduced and the complexity introduced by storing and computing with tensors by blocks is manageable. Preliminary results demonstrate that computational time is also reduced. The paper concludes with a discussion of how insights in this paper point to opportunities for generalizing recent advances in the domain of linear algebra libraries to the field of multi-linear computation.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.