Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Axiomatic Construction of Hierarchical Clustering in Asymmetric Networks (1301.7724v2)

Published 31 Jan 2013 in cs.LG, cs.SI, and stat.ML

Abstract: This paper considers networks where relationships between nodes are represented by directed dissimilarities. The goal is to study methods for the determination of hierarchical clusters, i.e., a family of nested partitions indexed by a connectivity parameter, induced by the given dissimilarity structures. Our construction of hierarchical clustering methods is based on defining admissible methods to be those methods that abide by the axioms of value - nodes in a network with two nodes are clustered together at the maximum of the two dissimilarities between them - and transformation - when dissimilarities are reduced, the network may become more clustered but not less. Several admissible methods are constructed and two particular methods, termed reciprocal and nonreciprocal clustering, are shown to provide upper and lower bounds in the space of admissible methods. Alternative clustering methodologies and axioms are further considered. Allowing the outcome of hierarchical clustering to be asymmetric, so that it matches the asymmetry of the original data, leads to the inception of quasi-clustering methods. The existence of a unique quasi-clustering method is shown. Allowing clustering in a two-node network to proceed at the minimum of the two dissimilarities generates an alternative axiomatic construction. There is a unique clustering method in this case too. The paper also develops algorithms for the computation of hierarchical clusters using matrix powers on a min-max dioid algebra and studies the stability of the methods proposed. We proved that most of the methods introduced in this paper are such that similar networks yield similar hierarchical clustering results. Algorithms are exemplified through their application to networks describing internal migration within states of the United States (U.S.) and the interrelation between sectors of the U.S. economy.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.