Papers
Topics
Authors
Recent
Search
2000 character limit reached

Flexible Decomposition Algorithms for Weakly Coupled Markov Decision Problems

Published 30 Jan 2013 in cs.AI | (1301.7405v1)

Abstract: This paper presents two new approaches to decomposing and solving large Markov decision problems (MDPs), a partial decoupling method and a complete decoupling method. In these approaches, a large, stochastic decision problem is divided into smaller pieces. The first approach builds a cache of policies for each part of the problem independently, and then combines the pieces in a separate, light-weight step. A second approach also divides the problem into smaller pieces, but information is communicated between the different problem pieces, allowing intelligent decisions to be made about which piece requires the most attention. Both approaches can be used to find optimal policies or approximately optimal policies with provable bounds. These algorithms also provide a framework for the efficient transfer of knowledge across problems that share similar structure.

Citations (94)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.