Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Unified Community Detection, Visualization and Analysis method (1301.7006v6)

Published 29 Jan 2013 in cs.SI, physics.data-an, physics.soc-ph, and stat.OT

Abstract: Community detection in social graphs has attracted researchers' interest for a long time. With the widespread of social networks on the Internet it has recently become an important research domain. Most contributions focus upon the definition of algorithms for optimizing the so-called modularity function. In the first place interest was limited to unipartite graph inputs and partitioned community outputs. Recently bipartite graphs, directed graphs and overlapping communities have been investigated. Few contributions embrace at the same time the three types of nodes. In this paper we present a method which unifies commmunity detection for the three types of nodes and at the same time merges partitionned and overlapping communities. Moreover results are visualized in such a way that they can be analyzed and semantically interpreted. For validation we experiment this method on well known simple benchmarks. It is then applied to real data in three cases. In two examples of photos sets with tagged people we reveal social networks. A second type of application is of particularly interest. After applying our method to Human Brain Tractography Data provided by a team of neurologists, we produce clusters of white fibers in accordance with other well known clustering methods. Moreover our approach for visualizing overlapping clusters allows better understanding of the results by the neurologist team. These last results open up the possibility of applying community detection methods in other domains such as data analysis with original enhanced performances.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.